Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17134, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273503

RESUMEN

The dry tropics occupy ~40% of the tropical land surface and play a dominant role in the trend and interannual variability of the global carbon cycle. Previous studies have reported considerable changes in the dry tropical precipitation seasonality due to climate change, however, the accompanied changes in the length of the vegetation growing season (LGS)-the key period of carbon sequestration-have not been examined. Here, we used long-term satellite observations along with in-situ flux measurements to investigate phenological changes in the dry tropics over the past 40 years. We found that only ~18% of the dry tropics show a significant (p ≤ .1) increasing trend in LGS, while ~13% show a significant decreasing trend. The direction of the LGS change depended not only on the direction of precipitation seasonality change but also on the vegetation water use strategy (i.e. isohydricity) as an adaptation to the long-term average precipitation seasonality (i.e. whether the most of LGS is in the wet season or dry season). Meanwhile, we found that the rate of LGS change was on average ~23% slower than that of precipitation seasonality, caused by a buffering effect from soil moisture. This study uncovers potential mechanisms driving phenological changes in the dry tropics, offering guidance for regional vegetation and carbon cycle studies.


Asunto(s)
Cambio Climático , Ecosistema , Estaciones del Año , Ciclo del Carbono , Secuestro de Carbono
2.
Glob Chang Biol ; 30(1): e17006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909670

RESUMEN

Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag-1 month temporal autocorrelation (TAC), to vegetation optical depth data in C-band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human-disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human-disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human-disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests.


Asunto(s)
Bosque Lluvioso , Resiliencia Psicológica , Efectos Antropogénicos , Conservación de los Recursos Naturales/métodos , Bosques
3.
Proc Natl Acad Sci U S A ; 119(26): e2101388119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733266

RESUMEN

The 2015/16 El Niño brought severe drought and record-breaking temperatures in the tropics. Here, using satellite-based L-band microwave vegetation optical depth, we mapped changes of above-ground biomass (AGB) during the drought and in subsequent years up to 2019. Over more than 60% of drought-affected intact forests, AGB reduced during the drought, except in the wettest part of the central Amazon, where it declined 1 y later. By the end of 2019, only 40% of AGB reduced intact forests had fully recovered to the predrought level. Using random-forest models, we found that the magnitude of AGB losses during the drought was mainly associated with regionally distinct patterns of soil water deficits and soil clay content. For the AGB recovery, we found strong influences of AGB losses during the drought and of [Formula: see text]. [Formula: see text] is a parameter related to canopy structure and is defined as the ratio of two relative height (RH) metrics of Geoscience Laser Altimeter System (GLAS) waveform data-RH25 (25% energy return height) and RH100 (100% energy return height; i.e., top canopy height). A high [Formula: see text] may reflect forests with a tall understory, thick and closed canopy, and/or without degradation. Such forests with a high [Formula: see text] ([Formula: see text] ≥ 0.3) appear to have a stronger capacity to recover than low-[Formula: see text] ones. Our results highlight the importance of forest structure when predicting the consequences of future drought stress in the tropics.


Asunto(s)
Biomasa , Sequías , El Niño Oscilación del Sur , Bosque Lluvioso , Suelo , Clima Tropical , Agua
4.
Science ; 376(6594): 692-693, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549408

RESUMEN

Current models may be overestimating the sequestration potential of forests.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Bosques , Árboles , Biomasa
5.
Nat Commun ; 13(1): 989, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190562

RESUMEN

Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit, VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP to soil versus atmospheric dryness is difficult to disentangle, however, because of their covariation. Using global eddy-covariance observations, here we show that a decrease in SWC is not universally associated with GPP reduction. GPP increases in response to decreasing SWC when SWC is high and decreases only when SWC is below a threshold. By contrast, the sensitivity of GPP to an increase of VPD is always negative across the full SWC range. We further find canopy conductance decreases with increasing VPD (irrespective of SWC), and with decreasing SWC on drier soils. Maximum photosynthetic assimilation rate has negative sensitivity to VPD, and a positive sensitivity to decreasing SWC when SWC is high. Earth System Models underestimate the negative effect of VPD and the positive effect of SWC on GPP such that they should underestimate the GPP reduction due to increasing VPD in future climates.


Asunto(s)
Aire , Sequías , Fotosíntesis , Suelo/química , Conjuntos de Datos como Asunto , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Europa (Continente) , Redes Neurales de la Computación , Hojas de la Planta/fisiología , Presión de Vapor , Agua/análisis , Agua/química
6.
Glob Chang Biol ; 28(9): 2940-2955, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202508

RESUMEN

Vegetation is a key component in the global carbon cycle as it stores ~450 GtC as biomass, and removes about a third of anthropogenic CO2 emissions. However, in some regions, the rate of plant carbon uptake is beginning to slow, largely because of water stress. Here, we develop a new observation-based methodology to diagnose vegetation water stress and link it to environmental drivers. We used the ratio of remotely sensed land surface to near surface atmospheric temperatures (LST/Tair ) to represent vegetation water stress, and built regression tree models (random forests) to assess the relationship between LST/Tair and the main environmental drivers of surface energy fluxes in the tropical Americas. We further determined ecosystem traits associated with water stress and surface energy partitioning, pinpointed critical thresholds for water stress, and quantified changes in ecosystem carbon uptake associated with crossing these critical thresholds. We found that the top drivers of LST/Tair , explaining over a quarter of its local variability in the study region, are (1) radiation, in 58% of the study region; (2) water supply from precipitation, in 30% of the study region; and (3) atmospheric water demand from vapor pressure deficits (VPD), in 22% of the study region. Regions in which LST/Tair variation is driven by radiation are located in regions of high aboveground biomass or at high elevations, while regions in which LST/Tair is driven by water supply from precipitation or atmospheric demand tend to have low species richness. Carbon uptake by photosynthesis can be reduced by up to 80% in water-limited regions when critical thresholds for precipitation and air dryness are exceeded simultaneously, that is, as compound events. Our results demonstrate that vegetation structure and diversity can be important for regulating surface energy and carbon fluxes over tropical regions.


Asunto(s)
Deshidratación , Ecosistema , Ciclo del Carbono , Humanos , Fotosíntesis , Temperatura
7.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190747, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32892724

RESUMEN

In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the reference summer of 2016. We found a greater drought-induced decline of summer GPP in grasslands (-38%) than in forests (-10%), which coincided with reduced evapotranspiration and soil water content (SWC). As compared to the 'normal year' of 2016, GPP in different ecosystems exhibited more negative sensitivity to summer air temperature (Ta) but stronger positive sensitivity to SWC during summer drought in 2018, that is, a stronger reduction of GPP with soil moisture deficit. We found larger negative effects of Ta and vapour pressure deficit (VPD) but a lower positive effect of photosynthetic photon flux density on GPP in 2018 compared to 2016, which contributed to reduced summer GPP in 2018. Our results demonstrate that high temperature-induced increases in VPD and decreases in SWC aggravated drought impacts on GPP. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Asunto(s)
Atmósfera/análisis , Cambio Climático , Sequías , Bosques , Pradera , Fenómenos Fisiológicos de las Plantas , Europa (Continente) , Estaciones del Año
8.
Nature ; 565(7740): 476-479, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675043

RESUMEN

Although the terrestrial biosphere absorbs about 25 per cent of anthropogenic carbon dioxide (CO2) emissions, the rate of land carbon uptake remains highly uncertain, leading to uncertainties in climate projections1,2. Understanding the factors that limit or drive land carbon storage is therefore important for improving climate predictions. One potential limiting factor for land carbon uptake is soil moisture, which can reduce gross primary production through ecosystem water stress3,4, cause vegetation mortality5 and further exacerbate climate extremes due to land-atmosphere feedbacks6. Previous work has explored the impact of soil-moisture availability on past carbon-flux variability3,7,8. However, the influence of soil-moisture variability and trends on the long-term carbon sink and the mechanisms responsible for associated carbon losses remain uncertain. Here we use the data output from four Earth system models9 from a series of experiments to analyse the responses of terrestrial net biome productivity to soil-moisture changes, and find that soil-moisture variability and trends induce large CO2 fluxes (about two to three gigatons of carbon per year; comparable with the land carbon sink itself1) throughout the twenty-first century. Subseasonal and interannual soil-moisture variability generate CO2 as a result of the nonlinear response of photosynthesis and net ecosystem exchange to soil-water availability and of the increased temperature and vapour pressure deficit caused by land-atmosphere interactions. Soil-moisture variability reduces the present land carbon sink, and its increase and drying trends in several regions are expected to reduce it further. Our results emphasize that the capacity of continents to act as a future carbon sink critically depends on the nonlinear response of carbon fluxes to soil moisture and on land-atmosphere interactions. This suggests that the increasing trend in carbon uptake rate may not be sustained past the middle of the century and could result in accelerated atmospheric CO2 growth.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Ecosistema , Humedad , Suelo/química , Agua/análisis , Atmósfera/química , Procesos Autotróficos , Secuestro de Carbono , Respiración de la Célula , Mapeo Geográfico , Fotosíntesis , Plantas/metabolismo , Estaciones del Año
9.
Nat Geosci ; Volume 10(Iss 6): 410-414, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31709007

RESUMEN

The terrestrial biosphere and atmosphere interact through a series of feedback loops. Variability in terrestrial vegetation growth and phenology can modulate fluxes of water and energy to the atmosphere, and thus affect the climatic conditions that in turn regulate vegetation dynamics. Here we analyze satellite observations of solar-induced fluorescence, precipitation, and radiation using a multivariate statistical technique. We find that biosphere-atmosphere feedbacks are globally widespread and regionally strong: they explain up to 30% of precipitation and surface radiation variance. Substantial biosphere-precipitation feedbacks are often found in regions that are transitional between energy and water limitation, such as semi-arid or monsoonal regions. Substantial biosphere-radiation feedbacks are often present in several moderately wet regions and in the Mediterranean, where precipitation and radiation increase vegetation growth. Enhancement of latent and sensible heat transfer from vegetation accompanies this growth, which increases boundary layer height and convection, affecting cloudiness, and consequently incident surface radiation. Enhanced evapotranspiration can increase moist convection, leading to increased precipitation. Earth system models underestimate these precipitation and radiation feedbacks mainly because they underestimate the biosphere response to radiation and water availability. We conclude that biosphere-atmosphere feedbacks cluster in specific climatic regions that help determine the net CO2 balance of the biosphere.

10.
Biogeosciences ; 14(18): 4101-4124, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29290755

RESUMEN

A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed Solar-Induced Fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H and GPP from 2007 to 2015 at 1° × 1° spatial resolution and on monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analysing WECANN retrievals across three extreme drought and heatwave events demonstrates the capability of the retrievals in capturing the extent of these events. Uncertainty estimates of the retrievals are analysed and the inter-annual variability in average global and regional fluxes show the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...